
AMSC 663 Mid-Year Presentation

OAR Lib: An Open Source,
Arc Routing Library

by Oliver Lum, !
!
Advised by!
Professor B. Golden

�1

Overview
❖ We seek to tackle the fundamental Arc-Routing Problems:!

❖ The Chinese Postman Problem: Given a graph G, (may
be undirected, directed, mixed, or windy), find a least
cost traversal of all the links in the graph that returns
to the starting node (closed).!

❖ The Rural Postman Problem: Given a graph G
(directed for our purposes), find a least cost traversal
of all the required links in the graph that returns to the
starting node (closed).

�2

Overview

❖ The general strategy will be to attempt to augment the
graph in a least cost way to reach an Eulerian graph,
over which an Euler circuit may be constructed
efficiently.

�3

Graph&HashMap<Integer,1Vertex>1
internalVertexMap &&

HashMap<Integer,Vertex>1
globalVertexMap&

HashMap<Integer,1Edge>1
internalEdgeMap&

HashMap<Integer,1Edge>1
globalEdgeMap&

Vertex&int1mID& int1matchID&

int1globalID& int1mDemand&

boolean1demandSet&

Link& int1mID& int1matchId&

int1globalID& int1mCapacity&

int1mCost& boolean1isDirected&

boolean1capacitySet& Pair<Vertex>1endpoints&
�4

Graph&

Directed&

Undirected&

Mixed&

Windy&

Vertex&
Directed&
• In/Out9Degree&
• Asymmetric9
Neighbors&

Undirected&
• Degree&
• Symmetric9
Neighbors&

Mixed&
• Supports9Both&

Link&
Arc&
• getHead();&
• getTail();&
• isDirected()9=9true;&

Edge&
• isDirected()9=9false;&

Mixed9Edge&
• Supports9Both&

Windy9Edge&
• Asymmetric9costs.&

Solver&
DCPP&
• Exact&

UCPP&
• Exact&

MCPP&
• Frederickson’s&
• Yaoyuenyong’s&

WPP&
• Win’s&
• Benavent’s&

�5

Common Algorithms
❖ There are several algorithms which are prevalent in almost all of our heuristic

solvers:!

❖ Min-Cost Flow:!

❖ Cycle-canceling min-cost flow!

❖ Shortest successive paths min-cost flow.!

❖ Single-Source Shortest Paths!

❖ Dijkstra’s!

❖ Bellman-Ford (Not implemented yet)!

❖ All-Pairs Shortest Paths!

❖ Floyd-Warshall

�6

Cycle Canceling Min-Cost Flow

❖ Establish initial feasible flow (greedily).!

❖ Set up the residual graph.!

❖ Detect and delete negative cycles by pushing flow
around them.!

❖ Halt when no negative cycles exist.

�7

Cycle Canceling Min-Cost Flow

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2
�8

Example of flow problem with initial feasible (non-optimal) solution

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2

Cycle Canceling Min-Cost Flow

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2
�9

Negative cycle detected in the residual graph; 1 unit of flow pushed around to cancel it.

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2

Cycle Canceling Min-Cost Flow

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2
�10

The network after the negative cycle has been cancelled.

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2

Cycle Canceling Min-Cost Flow

�11

Successive Shortest Paths Min-Cost Flow

❖ Add an artificial “Source” and “Sink” node to the graph.!

❖ Calculate a shortest path from Source to Sink, and push
as much flow as possible from Source to Sink.!

❖ Form the residual graph with the new flow.!

❖ Repeat until no paths from Source to Sink exist.

�12

Successive Shortest Paths Min-Cost Flow

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2
�13

The original flow problem.

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2

Successive Shortest Paths Min-Cost Flow

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2
�14

The modified network on which the SSP algorithm operates. (Node potentials in Blue).

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2

Successive Shortest Paths Min-Cost Flow

�15

Successive Shortest Paths Min-Cost Flow

❖ These run times are okay, but still not good enough…!

❖ The algorithm only requires a single-source shortest
path, but we were calculating all-pairs.!

❖ IDEA! Implement a faster, single-source shortest path
algorithm (Dijkstra’s)

�16

Dijkstra’s Algorithm
❖ Begin with the starting node, and examine its neighbors;

assigning distances according to the edge weights
connecting them, then add them to a priority queue,
(with priority equal to their current shortest path
distance).!

❖ Grab the least cost vertex from the queue, and examine
its neighbors, only assigning distances to them if they
beat the currently recorded best distance to said
neighbor.

�17

Dijkstra’s Algorithm

Dijkstra’s Algorithm initialization.

�18

http://en.wikipedia.org/wiki/Dijkstra's_algorithm

http://en.wikipedia.org/wiki/Dijkstra's_algorithm

Successive Shortest Paths Min-Cost Flow
(With Dijkstras)

�19

Floyd-Warshall All-Pairs Shortest Paths

❖ Initialize all shortest distances to ∞!

❖ For each pair of vertices between which there exist links,
set the shortest distance between them to be the cost of
the link (the minimum cost if there are multiple links).!

❖ Then, for a vertex double (u,v), iterate through the
vertices, and see if going from u to w and then from w
to v is cheaper than our current best.

�20

Floyd-Warshall All-Pairs Shortest Paths

�21

The Directed Chinese Postman Solver

❖ Eulerian means in-degree = out-degree for all vertices.!

❖ Identify unbalanced vertices, and solve a min-cost flow
problem over the graph, where a vertex’s supply is
given by in-degree - out-degree. Then, for each unit of
flow along an arc in the solution, add a copy of it.

�22

The Directed Chinese Postman Solver

�23

The Directed Chinese Postman Solver

�24

The Undirected Chinese Postman Solver

❖ Eulerian means degree is even for all vertices.!

❖ Identify the vertices with odd degree, and a solve a min-
cost matching on the complete graph of unbalanced
vertices, where edge costs are given by shortest path
costs in the original. Then add a shortest path between
each pair in the matching.

�25

The Undirected Chinese Postman Solver

�26

The Undirected Chinese Postman Solver

�27

Validation

❖ For the subroutines that we have coded (both shortest
path algorithms, and both min-cost flow
implementations), we have validated against solvers
available in “A Java Library of Graph Algorithms” [11].!

❖ For the Undirected and Directed Chinese Postmen
Problems, we have validated them against Gurobi
Solvers that we have written which work on the Integer
Programming Formulations to the problem.

�28

Validation (UCPP)

�29

Figure from [12]

•  Cost%function:%C%
•  Edge%set:%E%
•  Vertex%set:%V%
•  te%:%represents%number%of%additional%times%we%traverse%edge%e.%
•  !("):%set%of%edges%incident%on%v.%

Validation (DCPP)

•  Cost%function:%C%
•  fij%:%represents%number%of%additional%times%we%traverse%the%shortest%path%

from%i%to%j.%
•  !(#):%outdegree%–%indegree%of%vertex%v.%
•  &↑+ :%set%of%vertices%with%excess%outgoing%arcs.%
•  &↑− :%set%of%vertices%with%excess%incoming%arcs.%

Figure from [1]

�30

A Key Comparison
❖ How much better is this method than the IP Formulation

against which we validate?!

❖ Depending on the problem, very much so:!

❖ On a graph with ~300 links, solve times for Gurobi
regularly varied between 10 ms, and 1200 ms.!

❖ Gurobi is an industrial grade solver, written in a low
level language, with highly optimized code: designed
to be performant! (Sub-text, mine is not that good)

�31

Frederickson’s Mixed-1
❖ Two-Stage Heuristic: Choose the better answer from the results of 2 different heuristics.!

❖ Mixed1:!

❖ Even Degree: Suppose all arcs were edges; solve the UCPP. (Add copies of arcs as arcs).!

❖ In-Out Degree: Solve the following min-cost flow problem: !

❖ Demands / supplies given just as in the DCPP!

❖ Each arc in the original graph appears in the flow network with identical cost / direction.!

❖ Each edge in the original appears as 4 arcs in the flow network:!

❖ One in each direction with cost equal to the edge cost, and capacity ∞.!

❖ One in each direction with zero cost, and capacity 1.!

❖ For each unit of flow across a link in the solution, add a copy of it to the original graph.!

❖ Even Parity: Find cycles that may be eliminated to restore evenness.!

❖ Determine the odd-degree vertices.!

❖ Construct two graphs: one with only edges left undirected thus far; one with only arcs added during In-Out
Degree.!

❖ Greedily travel from odd vertex to odd vertex, alternating which graph you look in. Orient the edges traversed,
and add / delete copies (depending on direction of traversal) of the arcs traversed.

�32

Frederickson’s Mixed Chinese Postman Algorithm

(Even Degree) (In-Out Degree)

�33

Frederickson’s Mixed Chinese Postman Algorithm

(Even Parity)

�34

Frederickson’s Mixed-2

❖ Mixed2:!

❖ In-Out Degree: (Same as previous)!

❖ Large Cycles: Solve a min-cost matching among the
odd vertices, (where odd vertices are found after
in-out degree has ‘directed’ some edges.

�35

Frederickson’s Mixed Chinese Postman Algorithm

�36

Frederickson’s Mixed Chinese Postman Algorithm

�37

Frederickson’s Mixed Chinese Postman Algorithm

�38

The Shortest Additional Paths Heuristic (MCPP)

❖ Builds on work done by Frederickson’s:!

❖ In-Out Degree: (Same as previous)!

❖ SAPH Concept #1: For an added link <i - j>, see if we
can do better by adding a shortest path from i to j.

�39

The Shortest Additional Paths Heuristic (MCPP)

❖ SAPH Concept #2: For a ‘directed’ edge (i —> j), see if
we can do better by adding the two shortest paths
from i to j, and reversing direction

�40

The Shortest Additional Paths Heuristic (MCPP)

❖ Oh no! No way to solve for shortest paths in a graph
with negative cycles! (correspondence with author
under way).

�41

Schedule
❖ DCPP Solver (Complete, and Validated)!

❖ UCPP Solver (Complete, and Validated)!

❖ Test Framework (Complete)!

❖ MCPP Heuristics (1/2)!

❖ Frederickson’s (Complete)!

❖ Shortest Additional Paths (?)!

❖ WPP Heuristics!

❖ Win’s - (December)!

❖ Benavent’s - (December)!

❖ DRPP Heuristics!

❖ Christofides’ - (January)!

❖ Benavent’s - (January)!

❖ Performance Optimization** (February)!

❖ Gurobi Integration** (March)!

❖ Visualization** (April)!

❖ Final Report (May)

�42

❖ DCPP Solver (Complete, and Validated)!

❖ UCPP Solver (Complete, and Validated)!

❖ Test Framework (Complete)!

❖ MCPP Heuristics (1/2)!

❖ Frederickson’s (Complete)!

❖ Shortest Additional Paths (?)!

❖ WPP Heuristics!

❖ Win’s - (December / January)!

❖ Benavent’s - (December / January)!

❖ DRPP Heuristics!

❖ Christofides’ - (February / March)!

❖ Benavent’s - (February / March)!

❖ Performance Optimization** (Ongoing)!

❖ Gurobi Integration** (Partially Complete)!

❖ Visualization** (April)!

❖ Final Report (May)

Old Revised

References
1. Thimbleby, Harold. "The directed chinese postman problem." Software: Practice and Experience 33.11 (2003): 1081-1096.!

2. http://www.ise.ncsu.edu/fangroup/or766.dir/or766_ch9.pdf !

3. Eiselt, Horst A., Michel Gendreau, and Gilbert Laporte. "Arc routing problems, part I: The Chinese postman problem." Operations
Research 43.2 (1995): 231-242.!

4. Yaoyuenyong, Kriangchai, Peerayuth Charnsethikul, and Vira Chankong. "A heuristic algorithm for the mixed Chinese postman
problem." Optimization and Engineering 3.2 (2002): 157-187.!

5. Benavent, Enrique, et al. "New heuristic algorithms for the windy rural postman problem." Computers & operations research 32.12 (2005):
3111-3128.!

6. Eiselt, Horst A., Michel Gendreau, and Gilbert Laporte. "Arc routing problems, part II: The rural postman problem." Operations
Research 43.3 (1995): 399-414.!

7. Campos, V., and J. V. Savall. "A computational study of several heuristics for the DRPP." Computational Optimization and Applications 4.1
(1995): 67-77. (Replace this with Carmine’s paper when I get it).!

8. Dussault, Benjamin, et al. "Plowing with precedence: A variant of the windy postman problem." Computers & Operations Research (2012).!

9. Win, Zaw. "On the windy postman problem on Eulerian graphs." Mathematical Programming 44.1-3 (1989): 97-112.!

10. Christofides, Nicos, et al. "An algorithm for the rural postman problem on a directed graph." Netflow at Pisa. Springer Berlin Heidelberg,
1986. 155-166.!

11. Lau, Hang T. A Java library of graph algorithms and optimization. CRC Press, 2010.!

12. Derigs, Ulrich. Optimization and operations research. Eolss Publishers Company Limited, 2009.

�43

BONUS SLIDE!!! Min-Cost Perfect Matching

❖ Edmond’s Blossom Algorithm:!

❖ Based off an algorithm to find a maximum matching.!

❖ Operates on the dual of an LP set up to determine the
min-cost matching. !

❖ At each iteration, only augmenting paths with zero
reduced cost are candidates for addition.!

❖ Terminates when no more augmenting paths.

�44

BONUS SLIDE!!! Min-Cost Perfect Matching

http://en.wikipedia.org/wiki/Blossom_algorithm�45

http://en.wikipedia.org/wiki/Blossom_algorithm

BONUS SLIDE!!! Min-Cost Perfect Matching

http://en.wikipedia.org/wiki/Blossom_algorithm�46

http://en.wikipedia.org/wiki/Blossom_algorithm

